Frobenius-schur Indicators for Subgroups and the Drinfel’d Double of Weyl Groups

نویسندگان

  • ROBERT GURALNICK
  • SUSAN MONTGOMERY
چکیده

If G is any finite group and k is a field, there is a natural construction of a Hopf algebra over k associated to G, the Drinfel’d double D(G). We prove that if G is any finite real reflection group, with Drinfel’d double D(G) over an algebraically closed field k of characteristic not 2, then every simple D(G)-module has Frobenius-Schur indicator +1. This generalizes the classical results for modules over the group itself. We also prove some new results about Weyl groups. In particular, we prove that any abelian subgroup is inverted by some involution. Also, if E is any elementary abelian 2-subgroup of the Weyl group W , then all representations of CW (E) are defined over Q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence Subgroups and Generalized Frobenius-schur Indicators

We define generalized Frobenius-Schur indicators for objects in a linear pivotal category C. An equivariant indicator of an object is defined as a functional on the Grothendieck algebra of the quantum double Z(C) of C using the values of the generalized Frobenius-Schur indicators. In a spherical fusion category C with Frobenius-Schur exponent N , we prove that the set of all equivariant indicat...

متن کامل

Frobenius–schur Indicators of Unipotent Characters and the Twisted Involution Module

Let W be a finite Weyl group and σ a non-trivial graph automorphism of W . We show a remarkable relation between the σ-twisted involution module for W and the Frobenius–Schur indicators of the unipotent characters of a corresponding twisted finite group of Lie type. This extends earlier results of Lusztig and Vogan for the untwisted case and then allows us to state a general result valid for an...

متن کامل

Duality, Central Characters, and Real-valued Characters of Finite Groups of Lie Type

We prove that the duality operator preserves the Frobenius–Schur indicators of characters of connected reductive groups of Lie type with connected center. This allows us to extend a result of D. Prasad which relates the Frobenius–Schur indicator of a regular real-valued character to its central character. We apply these results to compute the Frobenius–Schur indicators of certain real-valued, i...

متن کامل

Twisted Frobenius–schur Indicators for Hopf Algebras

The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...

متن کامل

Computing Higher Frobenius-schur Indicators in Fusion Categories Constructed from Inclusions of Finite Groups

We consider a subclass of the class of group-theoretical fusion categories: To every finite group G and subgroup H one can associate the category of G-graded vector spaces with a two-sided H-action compatible with the grading. We derive a formula that computes higher Frobenius-Schur indicators for the objects in such a category using the combinatorics and representation theory of the groups inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008